Fluctuational Escape from Chaotic Attractors

نویسندگان

  • I. A. Khovanov
  • D. G. Luchinsky
  • R. Mannella
  • P. V. E. McClintock
  • A. N. Silchenko
چکیده

Fluctuational transitions between two coexisting attractors are investigated. Two different systems are considered: the periodically driven nonlinear oscillator and the two-dimensional map introduced by Holmes. These two systems have smooth and fractal boundaries, respectively, separating their coexisting attractors. It is shown that, starting from a cycle embedded in the chaotic attractor, the periodically-driven oscillator escapes to a saddle cycle at the boundary of the basin of attraction, and does so through sequential transitions between saddles cycles embedded in the attractor. In the case of discrete dynamics with locally disconnected fractal boundaries, it is shown that escape from an attractor always seems to occur through an accessible boundary orbit and further through the specific homoclinic points forming a fractal structure of the boundary. It is shown that analysis of fluctuational transitions between attractors can be used to solve a problem of the energy-optimal migration of a chaotic system. The deterministic optimal control functions are identified with the corresponding optimal fluctuational forces in the limit of small noise intensity. We discuss possible applications and related unsolved problems of stochastic dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluctuational Escape from Chaotic attractors in multistable Systems

Recent progress towards an understanding of fluctuational escape from chaotic attractors (CAs) is reviewed and discussed in the contexts of both continuous systems and maps. It is shown that, like the simpler case of escape from a regular attractor, a unique most probable escape path (MPEP) is followed from a CA to the boundary of its basin of attraction. This remains true even where the bounda...

متن کامل

ar X iv : n lin / 0 30 20 14 v 1 [ nl in . C D ] 6 F eb 2 00 3 Fluctuational transitions through a fractal basin boundary

Fluctuational transitions between two co-existing chaotic attractors, separated by a fractal basin boundary, are studied in a discrete dynamical system. It is shown that the mechanism for such transitions is determined by a hierarchy of homoclinic points. The most probable escape path from the chaotic attractor to the fractal boundary is found using both statistical analyses of fluctuational tr...

متن کامل

Fluctuational transitions across different kinds of fractal basin boundaries.

We study fluctuational transitions in discrete and continuous dynamical systems that have two coexisting attractors in phase space, separated by a fractal basin boundary which may be either locally disconnected or locally connected. Theoretical and numerical evidence is given to show that, in each case, the transition occurs via a unique accessible point on the boundary, both in discrete system...

متن کامل

Noise Induced Escape from Different Types of Chaotic Attractor

Noise-induced escape from a quasi-attractor, and from the Lorenz attractor with non-fractal boundaries, are compared through measurements of optimal paths. It has been found that, for both types of attractor, there exists a most probable (optimal) escape trajectory, the prehistory of the escape being defined by the structure of the chaotic attractor. For a quasi-attractor the escape process is ...

متن کامل

Optimal Fluctuations and the Control of Chaos

The energy-optimal migration of a chaotic oscillator from one attractor to another coexisting attractor is investigated via an analogy between the Hamiltonian theory of fluctuations and Hamiltonian formulation of the control problem. We demonstrate both on physical grounds and rigorously that the Wentzel-Freidlin Hamiltonian arising in the analysis of fluctuations is equivalent to Pontryagin’s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003